The absmapsdata
package exists to make it easier to produce maps from ABS data in R. The package contains compressed, tidied, and lazily-loadable sf
objects that hold geometric information about ABS data structures.
It also contains a vast number of 2016 population-weighted ABS correspondences (the most recent) that you can access with the get_correspondence_absmaps
function. The correspondences available can be found at the data.gov.au website.
Note: the absmapsdata
package is huge. To download and read absmapsdata
files without installing the whole absmapsdata package, please see strayr::read_absmaps
. E.g.: strayr::read_absmaps("sa42021")
You can install absmapsdata
from github with:
# install.packages("remotes")
remotes::install_github("wfmackey/absmapsdata")
absmapsdata
contains a lot of data, so installing using remotes::install_github
may fail if the download times out. If this happens, set the timeout option to a large value and try again, i.e. run:
options(timeout = 1000)
remotes::install_github("wfmackey/absmapsdata")
The sf
package is required to handle the sf
objects:
Available maps are listed below. These will be added to over time. If you would like to request a map to be added, let me know via an issue on this Github repo.
ASGS Main Structures
sa12011
; 2016: sa12016
; and 2021: sa12021
.sa22011
; 2016: sa22016
; and 2021: sa22021
.sa32011
; 2016: sa32016
; and 2021: sa32021
.sa42011
; 2016: sa42016
; and 2021: sa42021
.gcc2011
; 2016: gcc2016
; and 2021: gcc2021
.ra2011
; and 2016: ra2016
state2011
; 2016: state2016
; and state2021
.ASGS Non-ABS Structures
ced2018
; and 2021: ced2021
sed2018
; and 2021: sed2021
lga2016
; 2018: lga2018
; and 2021: lga2021
regional_ivi2008
postcode2016
; and 2021: postcode2021
suburb2016
; and (SAL) 2021: suburb2021
dz2011
; 2016: dz2016
; and 2021: dz2021
.Non-ABS Australian Government Structures
employment_regions2015
The absmapsdata
package comes with pre-downloaded and pre-processed data. To load a particular geospatial object: load the package, then call the object (see list above for object names).
library(tidyverse)
#> ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
#> ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
#> ✓ tibble 3.1.5 ✓ dplyr 1.0.7
#> ✓ tidyr 1.1.4 ✓ stringr 1.4.0
#> ✓ readr 2.0.2 ✓ forcats 0.5.1
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
library(sf)
#> Linking to GEOS 3.8.1, GDAL 3.2.1, PROJ 7.2.1
library(absmapsdata)
mapdata1 <- sa32021
glimpse(mapdata1)
#> Rows: 359
#> Columns: 12
#> $ sa3_code_2021 <chr> "10102", "10103", "10104", "10105", "10106", "10201", …
#> $ sa3_name_2021 <chr> "Queanbeyan", "Snowy Mountains", "South Coast", "Goulb…
#> $ sa4_code_2021 <chr> "101", "101", "101", "101", "101", "102", "102", "103"…
#> $ sa4_name_2021 <chr> "Capital Region", "Capital Region", "Capital Region", …
#> $ gcc_code_2021 <chr> "1RNSW", "1RNSW", "1RNSW", "1RNSW", "1RNSW", "1GSYD", …
#> $ gcc_name_2021 <chr> "Rest of NSW", "Rest of NSW", "Rest of NSW", "Rest of …
#> $ state_code_2021 <chr> "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",…
#> $ state_name_2021 <chr> "New South Wales", "New South Wales", "New South Wales…
#> $ areasqkm_2021 <dbl> 6511.3971, 14284.5857, 9864.4876, 9099.9087, 12135.865…
#> $ cent_lat <dbl> -35.44896, -36.43821, -36.49582, -34.51746, -34.57987,…
#> $ cent_long <dbl> 149.6018, 148.9415, 149.8079, 149.6046, 148.6786, 151.…
#> $ geometry <MULTIPOLYGON [°]> MULTIPOLYGON (((149.979 -35..., MULTIPOLY…
Or
mapdata2 <- sa22016
glimpse(mapdata2)
#> Rows: 2,310
#> Columns: 15
#> $ sa2_code_2016 <chr> "101021007", "101021008", "101021009", "101021010", "1…
#> $ sa2_5dig_2016 <chr> "11007", "11008", "11009", "11010", "11011", "11012", …
#> $ sa2_name_2016 <chr> "Braidwood", "Karabar", "Queanbeyan", "Queanbeyan - Ea…
#> $ sa3_code_2016 <chr> "10102", "10102", "10102", "10102", "10102", "10102", …
#> $ sa3_name_2016 <chr> "Queanbeyan", "Queanbeyan", "Queanbeyan", "Queanbeyan"…
#> $ sa4_code_2016 <chr> "101", "101", "101", "101", "101", "101", "101", "101"…
#> $ sa4_name_2016 <chr> "Capital Region", "Capital Region", "Capital Region", …
#> $ gcc_code_2016 <chr> "1RNSW", "1RNSW", "1RNSW", "1RNSW", "1RNSW", "1RNSW", …
#> $ gcc_name_2016 <chr> "Rest of NSW", "Rest of NSW", "Rest of NSW", "Rest of …
#> $ state_code_2016 <chr> "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",…
#> $ state_name_2016 <chr> "New South Wales", "New South Wales", "New South Wales…
#> $ areasqkm_2016 <dbl> 3418.3525, 6.9825, 4.7634, 13.0034, 3054.4099, 13.6789…
#> $ cent_long <dbl> 149.7932, 149.2328, 149.2255, 149.2524, 149.3911, 149.…
#> $ cent_lat <dbl> -35.45508, -35.37590, -35.35103, -35.35520, -35.44408,…
#> $ geometry <MULTIPOLYGON [°]> MULTIPOLYGON (((149.7606 -3..., MULTIPOLY…
The resulting sf
object contains one observation per area (in the following examples, one observation per sa3
). It stores the geometry information in the geometry
variable, which is a nested list describing the area’s polygon. The object can be joined to a standard data.frame
or tibble
and can be used with dplyr
functions.
sf
object
We do all this so we can create gorgeous maps. And with the sf
object in hand, plotting a map via ggplot
and geom_sf
is simple.
map <-
sa32016 %>%
filter(gcc_name_2016 == "Greater Melbourne") %>% # let's just look Melbourne
ggplot() +
geom_sf(aes(geometry = geometry)) # use the geometry variable
map
The data also include centroids of each area, and we can add these points to the map with the cent_lat
and cent_long
variables using geom_point
.
map <- sa32016 %>%
filter(gcc_name_2016 == "Greater Melbourne") %>% # let's just look Melbourne
ggplot() +
geom_sf(aes(geometry = geometry)) + # use the geometry variable
geom_point(aes(cent_long, cent_lat)) # use the centroid long (x) and lats (y)
map
Cool. But this all looks a bit ugly. We can pretty it up using ggplot
tweaks. See the comments on each line for its objective. Also note that we’re filling the areas by their areasqkm
size, another variable included in the sf
object (we’ll replace this with more interesting data in the next section).
map <- sa32016 %>%
filter(gcc_name_2016 == "Greater Melbourne") %>% # let's just look Melbourne
ggplot() +
geom_sf(aes(geometry = geometry, # use the geometry variable
fill = areasqkm_2016), # fill by area size
lwd = 0, # remove borders
show.legend = FALSE) + # remove legend
geom_point(aes(cent_long,
cent_lat), # use the centroid long (x) and lats (y)
colour = "white") + # make the points white
theme_void() + # clears other plot elements
coord_sf()
map
At some point, we’ll want to join our spatial data with data-of-interest. The variables in our mapping data—stating the numeric code and name of each area and parent area—will make this relatively easy.
For example: suppose we had a simple dataset of median income by SA3 over time.
# Read data in some data
income <- read_csv("https://raw.githubusercontent.com/wfmackey/absmapsdata/master/img/data/median_income_sa3.csv")
#> Rows: 2148 Columns: 3
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (2): sa3_name_2016, year
#> dbl (1): median_income
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(income)
#> # A tibble: 6 × 3
#> sa3_name_2016 year median_income
#> <chr> <chr> <dbl>
#> 1 Queanbeyan 2010-11 51858
#> 2 Snowy Mountains 2010-11 35884
#> 3 South Coast 2010-11 30908
#> 4 Goulburn - Mulwaree 2010-11 38269
#> 5 Young - Yass 2010-11 39489
#> 6 Gosford 2010-11 38189
This income data contains a variable sa3_name_2016
, and we can use dplyr::left_join()
to combine with our mapping data.
combined_data <- left_join(income,
sa32016,
by = "sa3_name_2016")
Now that we have a tidy dataset with 1) the income data we want to plot, and 2) the geometry of the areas, we can plot income by area:
map <- combined_data %>%
filter(gcc_name_2016 == "Greater Melbourne") %>% # let's just look Melbourne
ggplot() +
geom_sf(aes(geometry = geometry, # use the geometry variable
fill = median_income), # fill by unemployment rate
lwd = 0) + # remove borders
theme_void() + # clears other plot elements
labs(fill = "Median income")
map
You can use the get_correspondence_absmaps
function to get population-weighted correspondence tables provided by the ABS. Note that while there are lots of correspondence tables, not every combination is available.
For example:
get_correspondence_absmaps("cd", 2006,
"sa1", 2016)
#> # A tibble: 92,336 × 5
#> CD_CODE_2006 SA1_MAINCODE_2016 SA1_7DIGITCODE_2016 ratio PERCENTAGE
#> <chr> <chr> <chr> <dbl> <chr>
#> 1 1010101 10902117908 1117908 0.477 47.705709900000002
#> 2 1010101 10902117909 1117909 0.486 48.579130499999998
#> 3 1010101 10902117910 1117910 0.0372 3.7151597000000001
#> 4 1010102 10902117907 1117907 0.210 21.012930999999998
#> 5 1010102 10902117908 1117908 0.281 28.062155199999999
#> 6 1010102 10902117910 1117910 0.509 50.924913799999999
#> 7 1010103 10902117907 1117907 1 100
#> 8 1010104 10902117901 1117901 0.510 51.007496400000001
#> 9 1010104 10902117907 1117907 0.490 48.992503599999999
#> 10 1010105 10902117907 1117907 1 100
#> # … with 92,326 more rows
The motivation for this package is that maps are cool and fun and are, sometimes, the best way to communicate data. And making maps is R
with ggplot
is relatively easy when you have the right object
.
Getting the right object
is not technically difficult, but requires research into the best-thing-to-do at each of the following steps:
R
using one-of-many import tools.For me at least, finding the correct information and developing the best set of steps was a little bit interesting but mostly tedious and annoying. The absmapsdata
package holds this data for you, so you can spend more time making maps, and less time on Stack Overflow, the ABS website, and lovely-people’s wonderful blogs.
The best avenue is via a Github issue at wfmackey/absmapsdata/issues. This is also the best place to request data that isn’t yet available in the package.